Comparative efficacy of 3 soluble epoxide hydrolase inhibitors in rat neuropathic and inflammatory pain models.
نویسندگان
چکیده
Epoxy-fatty acids have been recognized as important cell signaling molecules with multiple biological effects including anti-nociception. The main degradation pathway of these signaling molecules is via the soluble epoxide hydrolase (sEH) enzyme. Inhibitors of sEH extend the anti-nociceptive effects of fatty acid epoxides. In this study two models of pain with different etiology, streptozocin induced type I diabetic neuropathic pain and lipopolysaccharide induced inflammatory pain were employed to test sEH inhibitors. A dose range of three sEH inhibitors with the same central pharmacophore but varying substituent moieties was used to investigate maximal anti-allodynic effects in these two models of pain. Inhibiting the sEH enzyme in these models successfully blocked pain related behavior in both models. The sEH inhibitors were more potent and more efficacious than celecoxib in reducing both diabetic neuropathic pain and lipopolysaccharide induced inflammatory pain. Because of their ability to block diabetic neuropathic pain sEH inhibition is a promising new approach to treat chronic pain conditions.
منابع مشابه
Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase
Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...
متن کاملDesign, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase
Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...
متن کاملDesign, Synthesis and Biological Evaluation of 4-Benzamidobenzoic Acid Hydrazide Derivatives as Novel Soluble Epoxide Hydrolase Inhibitors
Inhibitors of soluble epoxide hydrolase (sEH) represent one of the novel pharmaceutical approaches for treating hypertension, vascular inflammation, pain and other cardiovascular related diseases. Most of the potent sEH inhibitors reported in literature often suffer from poor solubility and bioavailability. Toward improving pharmacokinetic profile beside favorable potency, two series of 4-benza...
متن کاملDesign, Synthesis and Biological Evaluation of 4-Benzamidobenzoic Acid Hydrazide Derivatives as Novel Soluble Epoxide Hydrolase Inhibitors
Inhibitors of soluble epoxide hydrolase (sEH) represent one of the novel pharmaceutical approaches for treating hypertension, vascular inflammation, pain and other cardiovascular related diseases. Most of the potent sEH inhibitors reported in literature often suffer from poor solubility and bioavailability. Toward improving pharmacokinetic profile beside favorable potency, two series of 4-benza...
متن کاملOptimized Inhibitors of Soluble Epoxide Hydrolase Improve in Vitro Target Residence Time and in Vivo Efficacy
Diabetes is affecting the life of millions of people. A large proportion of diabetic patients suffer from severe complications such as neuropathic pain, and current treatments for these complications have deleterious side effects. Thus, alternate therapeutic strategies are needed. Recently, the elevation of epoxy-fatty acids through inhibition of soluble epoxide hydrolase (sEH) was shown to red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of pharmacology
دوره 700 1-3 شماره
صفحات -
تاریخ انتشار 2013